Differential Carbohydrate Binding and Cell Surface Glycosylation of Human Cancer Cell Lines

Nadia X. Arndt, Joe Tiralongo,^{*} Paul D. Madge, Mark von Itzstein, and Christopher J. Day^{*} Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia

ABSTRACT

Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116–FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan–lectin interactions that are exhibited by immortalised cell lines. J. Cell. Biochem. 112: 2230–2240, 2011. © 2011 Wiley-Liss, Inc.

KEY WORDS: GLYCAN; LECTIN; GLYCOSYLATION; IMMORTALISED CELL LINES; ARRAY

lycan and lectin arrays are becoming more widely employed as a tool to elucidate the specificity of carbohydrate binding proteins (CBPs), and to evaluate cell surface glycosylation, respectively [Hirabayashi, 2003; Liang et al., 2008; Tao et al., 2008]. Glycosylation is a predominant post-translation modification, with SWISS-PROT estimating that over 50% of all known proteins and lipids synthesised by eukaryotes being glycosylated [Apweiler et al., 1999; Wells and Hart, 2003]. Eukaryotic cells not only possess an extensive repertoire of glycan structures on their cell surface, but also express diverse CBPs (or lectins) that specifically recognise and bind glycan structures on other cells. The interplay between lectins and glycans on neighbouring cells regulates cellcell communications, and is therefore involved in numerous biological processes including adherence, differentiation, transformation, immunity, and inflammation [Hirabayashi et al., 2002]. Glycan and lectin arrays have been extremely important in assessing glycan-lectin interactions that mediate these processes, providing platforms capable of rapidly producing large quantities of binding data [Tao et al., 2008; Song et al., 2009].

Our interest in better understanding the role of lectin–glycan interactions in malignant transformation lead us to utilise a discrete glycan and lectin array for the analysis of both the glycan bind capacity and cell surface glycosylation of cultured human cancer cells. Aberrant glycosylation is a well-known marker of malignant transformation and tumour progression [Cornil et al., 1990; Iozzo and Cohen, 1993; Dennis et al., 1999; Hakomori, 2002], and even though cultured human cancer cells are frequently used as models in cancer research and cell biology in general, little is known about the extent and nature of glycosylation present on, and the glycan structures recognised by, these commonly used cell lines. Here we describe the systematic Glycomics evaluation of five human cancer cell lines (HCT116, HCT116–FM6 (expressing MUC1), MDA-MB435, HeLa and Caco-2 cells) frequently used as models in cancer and cell biology research using glycan and lectin arrays.

MATERIALS AND METHODS

PREPARATION OF GLYCAN AND LECTIN ARRAYS

Glycans sourced from Dextra Laboratories (Reading, UK) and Glycoseparations (Moscow, Russia) were functionalised and printed on activated SuperEpoxy 2 glass slides (ArrayIt Microarray Technologies, Sunnyvale, CA) as previously described [Day et al., 2009]. Two identical sub-arrays consisting of 120 glycans printed in

Additional supporting information may be found in the online version of this article. *Correspondence to: Joe Tiralongo or Christopher J. Day, Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia. E-mail: j.tiralongo@griffith.edu.au or c.day@griffith.edu.au Received 17 February 2011; Accepted 31 March 2011 • DOI 10.1002/jcb.23139 • © 2011 Wiley-Liss, Inc. Published online 7 April 2011 in Wiley Online Library (wileyonlinelibrary.com).

replicates of four were prepared per slide. A full list of glycans printed is given in Table I.

Lectins obtained from EY Laboratories (San Mateo, CA) and Sigma-Aldrich, St. Louis, MO were directly printed onto SuperEpoxy 2 glass slides without modification and blocked as described by [Hartley-Tassell et al., 2010]. Four identical sub-arrays consisting of 18 lectins printed in replicates of three were prepared per slide.

CULTURING, HARVESTING AND FLUORESCENT LABELLING OF HUMAN CANCER CELL LINES

The human cancer cell lines used in this study (Table II) were cultured in minimum essential medium (MEM) supplemented with 10% foetal calf serum (Life Technologies, Carlsbad, CA), 100 µg/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine and 10% sodium pyruvate. Cells were allowed to grow at 37°C in a humidified incubator with 5% CO₂ until they had reached greater than 80% confluence. Cells were harvested by cell-scraping and collected by centrifugation at 1,200 rpm for 5 min. The resulting pellet was washed 4-5 times with warmed PBS, pH 7.4, resuspended in 0.5-1 ml CFDA-SE (Carboxyfluorescein diacetate succinimidyl ester; Invitrogen, Mount Waverly, Victoria) 25 µM in PBS at 10⁶ cells/ml and incubated for 30-60 min on ice. Cells were subsequently pelleted and visually inspected for staining of cells by fluorescence microscopy. Stained cells were washed three times in PBS, three times in MEM media and resuspended at the required cell concentration in the required volume (125 µl for each glycan sub-array, and $65 \,\mu$ l for each lectin sub-array).

Prior to application of cells to glycan and lectin arrays, each CFDA-labelled cell line was assessed for the extent and level of fluorescence by flow cytometric analysis using a Becton Dickinson FACSCalibur flow cytometer and CellQuest software (Becton Dickson, Franklin Lakes, NJ Immunocytometry Systems). Labelled cells (2.5×10^5) were suspended in 500 µl of 1% formaldehyde and 0.05% BSA in PBS, and fluorescence detected using the 488 nm laser where auto-fluorescence was initially determined by measuring cells that were untreated with CFDA-SE.

APPLICATION TO GLYCAN AND LECTIN ARRAYS

Each of the glycan and lectin sub-arrays present per slide was isolated using a 1.7×2.8 cm (125 µl) and 1.5×1.6 cm (65 µl) Gene Frame (Abgene, Epsom, UK), respectively, into which 10⁵-10⁶ CFDA-labelled cells was added. Each sub-array was covered with a GeneFrame coverslip (Abgene) and incubated in the dark for 15-30 min in a humidified incubator at 37°C. GeneFrames and coverslips were then removed and the slides carefully washed with 50 ml of pre-warmed PBS containing 1 mM Mg²⁺ and 1 mM Ca²⁺ by gently flowing 1 ml at a time across the surface of the array. Glycan arrays were also performed with the addition of the influenza virus sialidase inhibitor 4-deoxy-4guanidino-Neu5Ac2en to a final concentration of 1 mM to inhibit cell surface Neu3 [Hata et al., 2008]. Slides were then fixed by incubation in 10% formaldehyde/PBS solution in a 50 ml tube for 5 min. Following washing with PBS, slides were dried by centrifugation at 900 rpm for 3 min in 50 ml.

FLUORESCENT IMAGE ACQUISITION AND DATA PROCESSING

Fluorescence intensities of the array spots were measured using the ProScanArray Microarray 4-laser scanner (Perkin Elmer, Waltham, MA) using the Blue Argon 488 excitation laser set to the FITC setting (492 nm excitation and 517 nm emission). Image analysis was carried out using the ProScanArray imaging software, ScanArray Express (Perkin Elmer). Statistical analysis was performed using Microsoft EXCEL software by performing independent sample *T*-tests.

DETERMINATION OF RELATIVE FLUORESCENCE

The extent and level of fluorescent labelling of each cell line as determined by flow cytometric analysis was used to generate a relative fluorescence normalisation value (N_F). This value was used to normalise each cell line with respect to the percentage of cells labelled and the level of labelling. The equation used to generate N_F is given by the following formula: N_F = $\frac{(L_{\overline{x}} \times 10^{-2})^{-1}}{L_{\overline{x}} \times 10^{-3}}$ where $L_{\overline{x}}$ is the mean percentage of cells labelled with CFDA, and $F_{\overline{x}}$ is the mean level of fluorescence associated with the cells.

RESULTS

FLOW CYTOMETRIC ANALYSIS OF CFDA-LABELLED CELLS

Flow cytometric analysis of CFDA-labelled cells (Fig. 1, Supplementary Material) showed that each cell line stained differently with respect to cell number and level of fluorescence. Table III shows that the percentage of HeLa cells labelled with CFDA is considerably lower than other cell lines tested. Conversely, the level of fluorescence associated with Caco-2 CFDA-labelled cells was almost double that on other cells. Therefore, in order to appropriately compare glycan and lectin array data between cell lines, a fluorescence correction or normalisation factor (N_F) was determined (Table III) and applied to raw fluorescence intensities obtained following array hybridisation.

GLYCAN ARRAY ANALYSIS

Glycan array experiments were performed in order to elucidate the glycan binding specificities of five cell lines (Table II) commonly used as in vitro models in cancer and cell biology studies. Each cell line was grown under optimum cell culturing conditions, labelled with the fluorescent dye CFDA and applied to our glycan array at between 10⁵-10⁶ cells per sub-array. Interactions of labelled cells with immobilised glycans were verified both manually through visual inspection of scanned images and through statistical analysis, with only statistically significant (P < 0.05) binding to glycans over background being considered a positive interaction. For simplicity the glycans present on our array have been grouped in six major classes: those containing terminal galactose (Gal; 24 members), those containing terminal N-acetylglucosamine (GlcNAc; 5 members), mannosylated glycans (8 members), fucosylated glycans (33 members), sialylated glycans (20 members) and glycosaminoglycans (GAGs) and related structures (42 members). Significant differential binding of human cultured cancer cells was observed in all six classes of glycan structures present on our glycan array.

To the best of our knowledge, none of the cultured cells used in this study have been assessed for carbohydrate binding potential by

TABLE I. Glycan Structures Present on Array

Class	Glycan	
Terminal Galactose	Galβ1-3GlcNAc	1A
	Galβ1-4GlcNAc	1B
	Galg1-6GcNAc	10 1D
	Galβ1-3GalNAc	1D 1E
	Galβ1-3GalNAcβ1-4Galβ1-4Glc	1F
	$Gal\beta 1-3GlcNAc\beta 1-3Gal\beta 1-4Glc$	1G
	Gal\$1-4GlcNAc\$1-3Gal\$1-4Glc Gal\$1-4GlcNAc\$1-6(Gal\$1-4GlcNAc\$1-3)Gal\$1-4Glc	1H 1I
	GaB1+4GlcNcB1-6(GaB1-3GlB1-3GlB1-4Glc	11 1.J
	Galα 1-4Galβ 1-4Glc	1K
	GalNAcα1-0-Ser	1L
	$Gal \beta 1-3Gal NAc \alpha 1-0-Ser$	1M
	Gala 1-3Gala Gala 1-3Gala 1-4GlcNAc	10 10
	Gala 1-3Galβ 1-4Glc	10 1P
	Galα1-3Galβ1-4Galα1-3Gal	2A
	Galβ1-6Gal	2B
		2C 2D
	Galva-4Gal81-4GlcNAc	2D 2E
	GalNAcα1-3Galβ1-4Glc	2F
	Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3)Galβ1-4Glc	2G
N. A potrol characterize	Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3GlcNAcβ1-3)Galβ1-4Glc CleN4-94 14Glc	2H
N-Acetylglucosamine	UICNACS 1-4UICNAC GloNACS 1-4GIoNACS 1-4GIoNAC	4A 4B
	GICNACB1-4GICNACB1-4GICNACB1-4GICNAC	4D 4C
	$GlcNAc\beta 1-4GlcNAc\beta 1-4GlcNAc\beta 1-4GlcNAc\beta 1-4GlcNAc\beta 1-4GlcNAc\beta 1-4GlcNAc$	4D
	GlcNAcβ1-4MurNAc	4E
Mannosylated	GlcNAcB1-2Man ClcNAcB1-2Man	5A
	Mano 1-2Mana 1-6 (OleNACE) 1-2Mana 1-3/Man Mano 1-2Man	5D 5C
	Mana 1-3Man	5D
	Manα1-4Man	5E
	Mana1-6Man	5F
	Man α 1-6(Man α 1-3)Man Man α 1.6(Man α 1.2)Man α 1.6(Man α 1.2)Man	5G 5U
Fucosvlated	Matrix 1 - 0(Matrix 1 - 3)(Matrix 1 - 3)(M	5H 7A
i ucosyluteu	Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc	7B
	Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4Glc	7C
	Fucα 1-2Galβ1-3(Fucα 1-4)GlcNAcβ1-3Galβ1-4Glc	7D
	Galβ1-3(Fucα1-4)GiCNAcβ1-3Galβ1-4(Fucα1-3)GiC Fucα1-2Gal	7E 7F
	Fuce 1-2GalB1-4Glc	7G
	Galβ1-4(Fucα1-3)Glc	7 H
	$Gal\beta 1-4[Fuc\alpha 1-3]GlcNAc$	7I
	Galβ1-3[Fucα1-4]GicNAc	7J 7V
	GainActor 1-5(Futor 1-2)Gai	7K 7L
	Galβ1-3(Fucα1-2)Gal	7M
	Fucα1-2Galβ1-4(Fucα1-3)GlcNAc	7N
	$Fuc\alpha 1-2Gal\beta 1-3Gl(cNAc$	70 7D
	$SO_3 - SO_3 D = 3(Frick - 4)O(CNAc$	7P 8A
	$SO_3 - 3Gal\beta - 4(Fuc\alpha - 3)GlcNAc$	8B
	Galβ1-3GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4Glc	8C
	$Gal\beta 1-4[Fuc\alpha 1-3]GlcNAc\beta 1-6[Gal\beta 1-3GlcNAc\beta 1-3]Gal\beta 1-4Glc$	8D
	$Gal\beta 1-4[Fuc\alpha 1-3]GalcAcg1-6[Fuc\alpha 1-2Gal\beta 1-3]GalcAcg1-1-3]Gal\beta 1-4Gic$	8E 8F
	GalB1-4GlcNAcB1-3GalB1-4[Fuca1-3]Glc	8G
	Fucα 1-2Gal β 1-4(Fucα 1-3)GlcNAc β 1-3Gal β 1-4Glc	8H
	$Fuc\alpha 1-3Gal\beta 1-4GlcNAc\beta 1-3Gal\beta 1-4(Fuc\alpha 1-3)Glc$	81
	$Fuc\alpha 1-2Ga[\beta 1-4[Fuc\alpha 1-3]GlcNAc\beta 1-3]Fuc\alpha 1-2]Ga[\beta 1-4Glc$	8J ov
	Galp1-4(Fucut 1-3)(GUACB1-6(GalB1-44)(Eucut 1-3)(Gl(NACB1-3)GalB1-4Glc	8L
	Fucα1-2Gal β 1-4(Fucα1-3)GlcNAc β 1-6(Gal β 1-4GlcNAc β 1-3)Gal β 1-4Glc	8M
	$Gal\beta 1-3GlcNAc\beta 1-3Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3)Gal\beta 1-4Glc -2GlcNAc\beta 1-3)Gal\beta 1-4Glc -2GlcNAc\beta 1-3(Gal\beta 1-4Glc -2GlcNAc\beta 1-3)Gal\beta 1-4Glc -2GlcNAc\beta 1-3(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc \beta 1$	8N
	$Fuc\alpha 1-2Gal\beta 1-3GlcNAc\beta 1-3Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3)Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3)Gal\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-3GlcNAc\beta 1-6(Gal\beta 1-3GlcNAc\beta 1-3GlcNAc \beta 1-3GlcNAc\beta 1-3GlcNAc \beta 1-3GlcNAc$	80
	4UIC GalNAcR1_3(Fuce 1_2)GalR1_4Glc	0D
	GalB1-3(Fuca1-2)GalB1-4(Fuca1-3)Glc	βΔ
Sialylated	Neu5Ac α 2-3Gal β 1-3(Fuc α 1-4)GlcNAc	10A
-	Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc	10B
	Neu $5Ac\alpha 2$ -3Gal β 1-3GlcNAc β 1-3Gal β 1-4Glc	10C
	υαιρ 1-4(Ευςα 1-3)υτείνας 1-6(Νευδάςα2-6υαίβ 1-4υτείναςβ 1-3)υαίβ 1-4υτε	10D

NeušArca2-00141-3(NeušAca2-6)GalNAC 101 Fucci 7-GalB1-3(Neu2-6)GlaNAC 102 NeušArca2-012 102 <	Class	Glycan	ID
$ \begin{array}{l} \mbox{Functional} \mbo$		Neu5Acα2-3Galβ1-3(Neu5Acα2-6)GalNAc	10E
NetsAce2-5 diajb 1-9 (Fixed - 1-9 (JichXe ² ₁) - 3 Giajb 1-4 (Gic 100 NetsAce2-5 Giajb 1-4 (GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 3 GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 3 GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 3 GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 4 GicXAc ² ₁) - 3 Giabb 1-4 (GicXAc ² ₁) - 4 GicXAc ² ₁) - 4 GicXAc ² ₁ - 4 GicXAc ² ₁) - 4 GicXAc ² ₁ - 4 GicXAc ² ₁) - 4 GicXAc ² ₁ - 4 GicXAc ² ₁ - 4 GicXAc ² ₁) - 4 GicXAc ² ₁ - 4 GicXAc ² -		$Fuc\alpha 1-2Gal\beta 1-3(Neu5Ac\alpha 2-6)GlcNAc\beta 1-3Gal\beta 1-4Glc$	10F
NetsAce2-Gela[1-3G(R)AG) [1] [1] NetsAce2-Gela[1-3G(R)AG) [1] [1] NetsAce2-Sela[1-4G(R)AG) [1] [1] Netearabeteasese41, 3, 5, 7+tetra-Sela[1] [1] <td></td> <td>Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc</td> <td>10G</td>		Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glc	10G
NetsAce2-6Ga[j] - JG(R)Acg1-JG(Ga] J-JG(R)Acg1-JG(Ga] J-JG(R)Acg1-JG(R)A		Neu5Acα2-6Galβ1-3GlcNAcβ1-3Galβ1-4(Fucα1-3)Glc	10H
$ \begin{array}{cccc} Gig [1-40] CNAcg1-Gig [1-4] CNAcg1-Gig [1-4] Cic NAcg1-3] Gig [1-4Gic \\ Neu5Acc2-Gig [1-4] Cic NAc \\ Cig [1-3] Neu5Acc2-Gig [1-4Gic \\ Neu5Acc2-Gig [1-4Gic$		Neu5Ac α 2-6Gal β 1-4GlcNAc β 1-6(Gal β 1-3GlcNAc β 1-3)Gal β 1-4Glc	10I
Neu Sacca 2-Gal [1 - 4Gic NAc 100 Neu Sacca 2-Gal [1 - 4Gic NAc 101 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic 100 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic 100 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic 100 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic 100 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic 100 Neu Sacca 2-Gal [1 - 4Gic NAcg 1 - 3Gal [1 - 4Gic Nace 3 - 13Gal [1 - 4Gic Nace 3 - 14Gal [1 - 4Gic Nace 3 - 14Ga		Galb1-4GlcNAcb1-6(Neu5Acq2-6Galb1-4GlcNAcb1-3)Galb1-4Glc	10I 10J
NeušAva2-66alji-1-4GicNAc 100 NeušAva2-66alji-1-3Ginj1-4Gic 100 Galj1-13(NeušAva2-6GilcNAcβ1-3Galj1-4Gic 100 NeušAva2-5Galj1-4Gic 100 NeušAva2-5Galj1-4Gic 100 NeušAva2-5Galj1-4Gic 111 NeušAva2-5Galj1-4Gic 111 NeušAva2-5Galj1-4Gic 111 NeušAva2-5Galj1-4Gic 111 NeušAva2-5Galj1-4Gic 112 NeušAva2-5Galj1-4Gic 112 NeušAva2-5Galj1-4Gic 112 NeušAva2-5Galj1-4Gic 112 NeušAva2-5Galj1-4GicNAc		Neusaar 23Galg 1-4Glc NAc	100
$ \begin{array}{c} \mbox{NuclSAcc2}-Gal[j1-3G[k1Acg] + 3G[k1Acg] $		Not Seco 2 Scale 1-4GleNAc	101
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $		Nutrian 2 2 Colp 1 - GleNAc Q 1 2 ColQ 1 4 Clo	101
bitspin 1-2000 1000 Number 2000 1000 Numer 2000 1000			1010
$ \begin{array}{c} \operatorname{Med}_{2} \mathcal{A}_{2} \mathcal{A}_{2} \operatorname{Gip}_{2} \mathcal{A}_{2} $			100
$ \begin{array}{ccc} (\operatorname{Red} 3 (22-3 \operatorname{Gall} 3 (-4 \operatorname{Gle} 1-4 \operatorname{Gle} 2-3 \operatorname{Gall} 3 (-4 \operatorname{Gle} 1-4 \operatorname{Gle} 2-3 \operatorname{Gall} 3 (-4 \operatorname{Gle} 1-4 \operatorname{Gle} 2-3 \operatorname{Gall} 3 (-4 \operatorname{Gle} 2-3 \operatorname{Gall} 3 (-4 \operatorname{Gle} 2-4 \operatorname{Gall} 2-4 2-4 $		Neutraco2-botalp1-40($(Nau(5)-30alp1-40)(2)$	100
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $			IUP
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $			11A 11D
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		NeuSAC α_2 -6Gal β_1 -4Gic	IIB
(NeubAcc2-6Galp1-4dicNAcp12-Manc1-6)2Map14-dicNAcp1-4dicNAc		[Neu5Acα2-8Neu5Ac]n	110
GAUss and related structures Neccarraterizances-41-0-sulphate (Na ⁺) 12A Neccarraterizaces-41-0-sulphate (Na ⁺) 12B Neccarraterizaces-41-3, 5, 5-retra-0-sulphate (Na ⁺) 12D Neccarraterizaces-41, 3, 5, 7-retra-0-sulphate (Na ⁺) 12D Neccarraterizaces-41, 3, 5, 7, 9-penta-0-sulphate (Na ⁺) 12D Neccarraterizaces-41, 3, 5, 7, 9-penta-0-sulphate (Na ⁺) 12D Neccarraterizaces-41, 3, 5, 7, 9-penta-0-sulphate (Na ⁺) 12D AUA-3C-GICNX-65 Na ₃ (I-S) 12D AUA-42S-GICNX-65 Na ₃ (II-S) 12D AUA-42S-GICNX-65 Na ₃ (II-S) 12D AUA-2S-GICNX-68 Na ₃ (II-A) 12D AUA-2S-GICNX-68 Na ₃ (II-A) 12D AUA-2S-GICNX-68 Na ₃ (I D-I 12D AUA-2S-GICNX-68 Na ₃ (A D-I-65) 12D AUA-2S-GINA-64 Na ₃ (A D-I-65) 12D AUA-2S-GINA-64 Na ₃ (A D-I-615) 12D AUA-2S-GINA-64 Na ₃ (A D-I-615) 12D AUA-2S-GINA-65 Na ₃ (A D-I-1615) 12D AUA-2S-GINA-64 So Na ₃ (A D-I-1615) 13D AUA-2S-GINA-64 So Na ₄ (A D-I-1616) 13D AUA-2S-GINA-64 So Na ₄ (A D-I-1616) 13D<		$(\text{Neu5Ac}\alpha^2-6\text{Gal}\beta^1-4\text{GlcNAc}\beta^1-2\text{Man}\alpha^1-6)2\text{Man}\beta^1-4\text{GlcNAc}\beta^1-4\text{GlcNAc}-A\text{sn}$	11D
Neccarraterizase-41-0-sulphate (Na ⁺) 12B Neccarraterizase-41, 3, 5-terra-0-sulphate (Na ⁺) 12C Neccarraterizase-41, 3, 5, 7-terra-0-sulphate (Na ⁺) 12F Neccarraterizase-41, 3, 5, 7-terra-0-sulphate (Na ⁺) 12F AUA-2S-GICNS-65 Na, (I-S) 12G AUA-2S-GICNS-65 Na, (I-S) 12G AUA-2S-GICNS-65 Na, (I-S) 12I AUA-2S-GICNS Na, (II-S) 12I AUA-2S-GICNA-65 Na, (I-A) 12J AUA-2S-GICNA-65 Na, (I-A) 12Z AUA-GICNK-65 Na, (I-A) 12Z AUA-2S-GICNA-C Na, (A, (A) 12Z AUA-2S-GICNA-C Na, (A, (A) 12Z AUA-2S-GICNA-C Na, (A, (A) 12Z AUA-2S-GINA-C-65 Na, (A) 12Z <td>GAGs and related structures</td> <td>Neocarratetraose-41, 3-di-<i>O</i>-sulphate (Na⁺)</td> <td>12A</td>	GAGs and related structures	Neocarratetraose-41, 3-di- <i>O</i> -sulphate (Na ⁺)	12A
Neocarrahexaose-41, 3, 5-terra-0-sulphate (Na ⁺)120Neocarratexaose-41, 3, 5, 7-terra-0-sulphate (Na ⁺)120Neocarratexaose-41, 3, 5, 7, 9-penta-0-sulphate (Na ⁺)127AUA-25-GicN3-65 Na ₂ (I-5)128AUA-25-GicN5-65 Na ₃ (I-5)124AUA-25-GicN5-65 Na ₃ (I-1)121AUA-25-GicN5-65 Na ₃ (I-1)121AUA-25-GicN5-65 Na ₃ (I-1)121AUA-25-GicN4-65 Na ₃ (I-1)121AUA-25-GicN4-65 Na ₃ (I-1)121AUA-25-GicN4-67 Na ₁ (I-1)121AUA-25-GicN4-68 Na ₁ (D-1-1)121AUA-25-GinN4-65 Na ₁ (D-1-1)121AUA-25-GinN4-65 Na ₁ (D-1-1)121AUA-25-GinN4-65 Na ₁ (D-1-1)121AUA-25-GinN4-65 Na ₁ (D-1-1)138GicAb1-3GicNA-61-40, (n = 4)137GicAb1-3GicNA-61-40, (n = 20)131GicAb1-3GicNA-61-40, (n = 20)		Neocarratetraose-41- <i>O</i> -sulphate (Na ⁺)	12B
Neocarrance 1, 3, 5-tri-C-sulphate (Na ⁺) 12D Neocarrancicaose-41, 3, 5, 7, 9-penta-0-sulphate (Na ⁺) 12E AUA 25-G(RNS-65 Na; (I-5) 12G AUA 25-G(RNS-65 Na; (I-5) 12D AUA 25-G(RNS-65 Na; (I-A) 12D AUA -32-G(RNS-65 Na; (I-A) 12D AUA -40-G(RNS-65 Na; (I-A) 12D AUA -40-G(RNS-65 Na; (I-A) 12D AUA -61 NA-65 Na; (A Di-65) 12D AUA -61 NA-65 Na; (A Di-65) 12D AUA -62 G(RNA-65 Na; (A Di-615) 12D AUA -62 GalNA-65 Na; (A Di-615) 12D AUA -25 GalNA-65 Na; (A Di-615) 13D AUA -25 GalNA-65 Na; (A Di-615) 13D AUA -25 GalNA-65 Na; (A Di-140; (A Di-140; (A Di-140; (A Di-140; (A Di-140; (A Di-		Neocarrahexaose-24,41, 3, 5-tetra- <i>O</i> -sulphate (Na ⁺)	12C
Neocarraoctaose-41, 3, 5, 7-tera-O-sulphate (Na ⁺) 12E Neocarraoccase-41, 3, 5, 7-9-penta-O-sulphate (Na ⁺) 12F $\Delta UA-gEucNes-6S$ Na ₄ (II-S) 12G $\Delta UA-gEucNes-6S$ Na ₄ (II-S) 12H $\Delta UA-gEucNes-6S$ Na ₄ (II-A) 12I $\Delta UA-gEucNes-6S$ Na ₂ (II-A) 12I $\Delta UA-gEucNes-6S$ Na ₂ (II-A) 12I $\Delta UA-gEucNes-6S$ Na ₂ (II-A) 12K $\Delta UA-GleNAc-6S$ Na ₂ (II-A) 12I $\Delta UA-GleNAc-AS$ Na ₂ (A Di-4S) 12I $\Delta UA-2S-GleNAc-AS Na_2 (A Di-4S) 13I \Delta UA-2S-GleNAc-AS Na_2 (A Di-4S) 13I \Delta UA-2S-GleNAc-AS Na_2 (A Di-4S) 13I \Delta UA-2S$		Neocarrahexaose-41, 3, 5-tri- <i>O</i> -sulphate (Na ⁺)	12D
Neocarradecase-41, 3, 5, 7, 9-penta-O-sulphate (Na ⁺) 12F $\Delta UASCr(cNS - SS Na_1 (IL-S)$ 12F $\Delta UASCr(cNS - SS Na_2 (IL-S)$ 12H $\Delta UA2S$ -GicNS Cos Na_1 (IL-A) 12J $\Delta UA2S$ -GicNS Na_3 (IIL-A) 12J $\Delta UA2S$ -GicNA Cos Na_1 (IL-A) 12L $\Delta UA2S$ -GicNA Cos Na_1 (IL-A) 12L $\Delta UA2S$ -GicNA Cos Na_1 (D-A) 12L $\Delta UA - GicNA - SG Na_1 (D-I-AS)$ 12N $\Delta UA - GinNA - 4S Na_1 (A D-I-4S)$ 12N $\Delta UA - GanNA - 4S Na_1 (A D-I-4S)$ 12P $\Delta UA - GanNA - 4S Na_1 (A D-I-4S)$ 12P $\Delta UA - 2S$ -GanNA - 4S Na_1 (A D-I-disE) 12P $\Delta UA - 2S$ -GanNA - 4S Na_1 (A D-I-disE) 13B $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13C $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13G $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13G $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13G $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13G $\Delta UA - 2S$ -GanNA - 4S OS Na_1 (A D-I-disE) 13G $GicAA - 1A - GanAAD- 1A_0 (n = 10) 13G GicAA - 1A - 1GinAAD- 1A_0 (n = 10) 13G $		Neocarraoctaose–41, 3, 5, 7-tetra– <i>O</i> -sulphate (Na ⁺)	12E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Neocarradecaose-41, 3, 5, 7, 9-penta- <i>O</i> -sulphate (Na ⁺)	12F
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\Delta UA-2S \rightarrow GlcNS-6S Na_4$ (I-S)	12G
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\Delta UA \rightarrow GlucNS-6S Na3 (II-S)$	12H
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\Delta UA \rightarrow 2S$ -GlcNS Na ₃ (III-S)	12I
$\begin{array}{cccc} \Delta UA - Glc NAc - 6S Na_2 (III-A) & 12K \\ \Delta UA - 2S - Glc NAc Na_2 (III-A) & 12L \\ \Delta UA - Glc NAc Na (IV-A) & 12M \\ \Delta UA - Glc NAc + S Na_2 (\Delta Di - 4S) & 12N \\ \Delta UA - Gal NAc - 6S Na_2 (\Delta Di - 6S) & 12N \\ \Delta UA - Gal NAc - 6S Na_2 (\Delta Di - 6S) & 12N \\ \Delta UA - 2S - Gal NAc - 4S Na_3 (\Delta Di - disB & 12P \\ \Delta UA - 2S - Gal NAc - 4S Na_3 (\Delta Di - disD & 13B \\ \Delta UA - 2S - Gal NAc - 4S - 6S Na_3 (\Delta Di - disD & 13B \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - disD & 13B \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - disD & 13B \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - disD & 13D \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - disD & 13D \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - disD & 13D \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - UA2S) & 13D \\ \Delta UA - 2S - Gal NAc - 6S Na_3 (\Delta Di - UA2S) & 13D \\ \Delta UA - Glc NAc Na (\Delta Di - HA) & 13E \\ (Glc Ab 1 - 3Glc NAc bi 1 + A)_n (n = 4) & 13F \\ (Glc Ab 1 - 3Glc NAc bi 1 - 4)_n (n = 10) & 13H \\ (Glc Ab 1 - 3Glc NAc bi 1 - 4)_n (n = 10) & 13H \\ (Glc Ab 1 - 3Glc NAc bi 1 - 4)_n (n = 200) & 13J \\ (Glc A/Ido Ab 1 - 3(\pm 4S)Gal NAc bi 1 - 4)_n (n < 250) & 13L \\ (Ha - 10 mM & 13N \\ HA - 4 10 mM & 14A \\ HA - 12 6.5 mM & 14A \\ HA - 12 6.5 mM & 14B \\ HA - 14 2.6.5 mM & 14A \\ HA - 14 5.6 mM & 14A \\ HA - 14 5.6 mM & 14A \\ HA - 14 5.6 mM & 14A \\ HA - 14 5.5 mM & 14A \\ HA - 14 5.0 00D Da 2.5 mg/ml & 14A \\ HA - 14 \\ HA - 100,000D Da 2.5 mg/ml & 14A \\ HA - 14 \\ HA - 100,000D Da 2.5 mg/ml & 14A \\ HA - 14 \\ HA - 100,000D Aa 2.5 mg/ml & 14A \\ HA - 14 \\ HA - 100,000D Aa 2.5 mg/ml & 14A \\ HA - 14 \\ HA - 100,000D Aa 2.5 mg/ml & 14A \\ HA - 14A \\ HA - 14 \\ HA - 150,00$		$\Delta UA \rightarrow 2S$ -GlcNAc-6S Na ₂ (I-A)	12J
$ \begin{array}{cccc} \Delta IJA & -25 \cdot GleNAc Na_{5} (III-A) & 121 \\ \Delta IJA & -25 \cdot GleNAc Na_{5} (V, V, III-A) & 12M \\ \Delta IJA & -GalNAc +45 Na_{2} (\Delta Di +45) & 12N \\ \Delta IJA & -GalNAc +45 Na_{2} (\Delta Di +45) & 12N \\ \Delta IJA & -GalNAc +45 Na_{2} (\Delta Di +disE) & 12P \\ \Delta IJA & -25 \cdot GalNAc +45 Na_{3} (\Delta Di +disE) & 13P \\ \Delta IJA & -25 \cdot GalNAc +45 \cdot SNa_{4} (\Delta Di +disB) & 13B \\ \Delta IJA & -25 \cdot GalNAc +45 \cdot SNa_{4} (\Delta Di +disS) & 13C \\ \Delta IJA & -25 \cdot GalNAc +45 \cdot SNa_{4} (\Delta Di +disS) & 13C \\ \Delta IJA & -25 \cdot GalNAc +45 \cdot SNa_{4} (\Delta Di +disS) & 13F \\ GleAh & -3GleNAc +10 & 13F \\ (GleAh -3GleNAc +10 + In (n = 4) & 13F \\ (GleAh -3GleNAc +10 + In (n = 4) & 13F \\ (GleAh -3GleNAc +10 + In (n = 10) & 13H \\ (GleAh -3GleNAc +10 + In (n = 10) & 13H \\ (GleAh -3GleNAc +10 + In (n = 200) & 13J \\ (GleA/IdoAa/Ih -13 +4/S)GalNAc +10 + In (n <250) & 13K \\ (H \pm 2S)GleA/IdoAh -13 +4S)GalNAc +10 + In (n <250) & 13K \\ (H \pm 2S)GleA/IdoAh -13 +4S)GalNAc +10 + In (n <250) & 13M \\ HA + 10 M & 13N \\ HA - 4 10 M & 13N \\ HA - 4 10 M & 13P \\ HA -12 \cdot 6.5 mM & 14P \\ HA -14 \cdot 5.6 mM & 14P \\ HA -14 \cdot 5.0 mM & 14P \\ HA -14 -10 $		$\Delta UA \rightarrow Glc NAc-6S Na_2 (II-A)$	12K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta UA \rightarrow 2S$ -GlcNAc Na ₂ (III-A)	12L
$\begin{array}{c c} \Delta UA - GaiNA - 4S Na_2 (\Delta Di + 4S) \\ \Delta UA - GaiNA - 4S Na_2 (\Delta Di + 4S) \\ \Delta UA - GaiNA - 4S Na_2 (\Delta Di + dis) \\ \Delta UA - GaiNA - 4S, SS Na_3 (\Delta Di + disB \\ 120 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_2 (\Delta Di + disB \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ \Delta UA - 2S - GaiNA - e4S, SS Na_3 (\Delta Di + disD \\ 34 \\ (GicAbi - 3GicNA - di + disD \\ ($		$\Delta IIA \rightarrow G CNAc Na (IV-A)$	12M
$\begin{array}{cccc} \Delta UA - GaiNAc - 6S Na_2 (\Delta Di - 6S) & 120 \\ \Delta UA GaiNAc - 4S, 6S Na_3 (\Delta Di - disB) & 12P \\ \Delta UA2S - GaiNAc - 4S Na_3 (\Delta Di - disB & 13A \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - disD) & 13B \\ \Delta UA2S - GaiNAc - 6S Na_4 (\Delta Di - tisS) & 13C \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA2S - GaiNAc - 6S Na_3 (\Delta Di - UA 2S) & 13D \\ \Delta UA3G + Na_4 (n = -4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16Ab 1 - 3G + CA Ab 1 - 4) & (16A - 250) & (131A + 2G + 26) & (131A + 2G + 26) & (131A + 26) & (132A + 26) & (134A + 26) & (1$		$\Delta IIA \rightarrow GalNAc - 4S Na_{2} (\Delta Di - 4S)$	12N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta UIA \rightarrow GalMAc-6S Na_2 (\Delta Di-6S)$	120
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$AUA \rightarrow GallAc_{AS} Na_{C} (A Di digE)$	120
$\begin{array}{cccc} Line (Line (Li$		$\Delta UA \rightarrow Gai MA_{c-4}S_{i-5}G_{i-5}$ (A Di-di-di-	121
$\begin{array}{cccc} \Delta UA - 25 - GalNA - 65 - 65 Na_4 (\Delta Di - USD) & 13D \\ \Delta UA - 25 - GalNA - 65 Na_2 (\Delta Di - UA2S) & 13D \\ \Delta UA - GleNA c Na (\Delta Di - HA) & 13F \\ (GleAb - 3GleNA cb 1 - 4)_n (n = 4) & 13F \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 8) & 13G \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 10) & 13I \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 10) & 13I \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 10) & 13I \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 200) & 13J \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n = 200) & 13J \\ (GleAb 1 - 3GleNA cb 1 - 4)_n (n < 250) & 13L \\ (H \pm 2S)GleA (JdeAb 1 - 3[\pm 4S)GalNA cb 1 - 4)_n (n < 250) & 13L \\ (H \pm 2S)GleA (JdeAb 1 - 3[\pm 4S)GalNA cb 1 - 4)_n (n < 250) & 13L \\ (H \pm 2S)GleA (JdeAb 1 - 3[\pm 4S)GalNA cb 1 - 4)_n (n < 250) & 13L \\ (H - 10 - 7.83 mM & 130 \\ HA - 4 10 mM & 130 \\ HA - 12 6 .5 mM & 140 \\ HA - 16 4 .9 mM & 140 \\ HA - 16 4 .9 mM & 140 \\ HA - 16 4 .9 mM & 140 \\ HA - 16 4 .9 mM & 140 \\ HA - 10 ,000 Da 2.5 mg/ml & 14F \\ HA 109,000 Da 2.5 mg/ml & 14F \\ HA 100,000 Da 2.5 mg/ml & 14F \\ HA 100,000 Da 2.5 mg/ml & 141 \\ HA 1,60,000 Da 2.5 mg/ml & 141 $		$\Delta UA \rightarrow 25$ Galvac 45 Na ₂ (Δ Di disp)	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta UA \rightarrow 25$ - Galiyac - 65 Na ₃ (Δ Di-Gils)	130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\Delta UA \rightarrow 25$ - GIINAC-45-55 Na4 (Δ DI-US5)	130
$\begin{array}{cccc} \Delta UA \rightarrow \text{GircAAc Na} (\Delta D1-A) & 13E \\ (GircAb1-3GircAAc b1-4)_n (n = 4) & 13F \\ (GircAb1-3GircNAc b1-4)_n (n = 8) & 13G \\ (GircAb1-3GircNAc b1-4)_n (n = 10) & 13H \\ (GircAb1-3GircNAc b1-4)_n (n = 12) & 13I \\ (GircA/IdoAa/b1-4GircNAca1-4)_n (n < 250) & 13J \\ (GircA/IdoAa/b1-3(\pm 4/6S)GalNAc b1-4)_n (n < 250) & 13H \\ ((\pm 2S)GircA/IdoAa/b1-3(\pm 4S)GalNAc b1-4)_n (n < 250) & 13H \\ (GircA/IdoAb1-3(\pm 6S)GalNAc b1-4)_n (n < 250) & 13H \\ (GircA/IdoAb1-3(\pm 6S)GalNAc b1-4)_n (n < 250) & 13H \\ (GircA/IdoAb1-3(\pm 6S)GalNAc b1-4)_n (n < 250) & 13H \\ (A-4 10 mM & 13N \\ HA-4 10 mM & 13N \\ HA-6 10 mM & 13O \\ HA-8 9.7 mM & 13P \\ HA-10 7.83 mM & 14A \\ HA-12 6.5 mM & 14A \\ HA-12 6.5 mM & 14B \\ HA-14 5.6 mM & 14D \\ HA-16 4.9 mM & 14D \\ HA-107,000 Da 2.5 mg/ml & 14F \\ HA 107,000 Da 2.5 mg/ml & 14F \\ HA 190,000 Da 2.5 mg/ml & 14H \\ HA 1,600,000 Da 2.5 mg/ml &$		$\Delta UA \rightarrow 25$ -Gainac-bs Na ₂ (Δ Di-UA25)	13D
IdeAb 1-3 GleNAcb 1-4)n (n = 4)13F(GleAb 1-3 GleNAcb 1-4)n (n = 8)13G(GleAb 1-3 GleNAcb 1-4)n (n = 10)13H(GleAb 1-3 GleNAcb 1-4)n (n = 200)13I(GleA/IdoAa/b 1-4 GleNAca 1-4)n (n = 200)13J(GleA/IdoAa/b 1-4 GleNAca 1-4)n (n < 250)		$\Delta UA \rightarrow OICNAC Na (\Delta DI-HA)$	13E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(GlcAb - 3GlcNAcb - 4)_n (n = 4)$	13F
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(GlcAb1-3GlcNAcb1-4)_n$ (n = 8)	13G
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(GlcAb1-3GlcNAcb1-4)_n (n = 10)$	13H
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(GlcAb1-3GlcNAcb1-4)_n (n = 12)$	131
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$(GlcA/IdoAa/b1-4GlcNAca1-4)_n (n = 200)$	13J
$ \begin{array}{ll} ((\pm 2S) GlcA/IdoAa/b1-3(\pm 4S) GalNAcb1-4)_n (n < 250) & 13L \\ (GlcA/IdoAb1-3(\pm 6S) GalNAcb1-4)_n (n < 250) & 13M \\ HA-4 10 mM & 13N \\ HA-4 10 mM & 13N \\ HA-6 10 mM & 13O \\ HA-8 9.7 mM & 13P \\ HA-10 7.83 mM & 14A \\ HA-12 6.5 mM & 14A \\ HA-14 5.6 mM & 14C \\ HA-16 4.9 mM & 14D \\ HA-16 4.9 mM & 14D \\ HA-16 4.9 mM & 14D \\ HA 10 0 Da 2.5 mg/ml & 14E \\ HA 107,000 Da 2.5 mg/ml & 14F \\ HA 190,000 Da 2.5 mg/ml & 14F \\ HA 190,000 Da 2.5 mg/ml & 14H \\ HA 1,600,000 Da 2.5 mg/ml & 1$		$(GlcA/IdoAb1-3(\pm 4/6S)GaINAcb1-4)_n (n < 250)$	13K
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$((\pm 2S)GlcA/IdoAa/b1-3(\pm 4S)GalNAcb1-4)_n (n < 250)$	13L
HA-4 10 mM 13N HA-6 10 mM 130 HA-6 10 mM 130 HA-8 9.7 mM 13P HA-10 7.83 mM 14A HA-12 6.5 mM 14B HA-14 5.6 mM 14D HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		$(GlcA/IdoAb1-3(\pm 6S)GalNAcb1-4)_n (n < 250)$	13M
HA-6 10 mM 130 HA-8 9.7 mM 13P HA-10 7.83 mM 14A HA-12 6.5 mM 14B HA-14 5.6 mM 14C HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 107,000 Da 2.5 mg/ml 14G HA 107,000 Da 2.5 mg/ml 14G HA 100,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-4 10 mM	13N
HA-8 9.7 mM 13P HA-10 7.83 mM 14A HA-10 7.83 mM 14A HA-12 6.5 mM 14B HA-14 5.6 mM 14C HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 107,000 Da 2.5 mg/ml 14G HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-6 10 mM	130
HA-10 7.83 mM 14A HA-12 6.5 mM 14B HA-14 5.6 mM 14C HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-8 9.7 mM	13P
HA-12 6.5 mM 14B HA-14 5.6 mM 14C HA-14 5.6 mM 14D HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-10 7.83 mM	14A
HA-14 5.6 mM 14C HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 107,000 Da 2.5 mg/ml 14G HA 100,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-12 6.5 mM	14B
HA-16 4.9 mM 14D HA-16 4.9 mM 14D HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA-14 5.6 mM	140
HA 30,000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14I		HA-16 4.9 mM	14D
HA 5000 Da 2.5 mg/ml 14E HA 107,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14H		HA 30 000 Da $2.5 \mathrm{mg/m}$	14D
HA 100,000 Da 2.5 mg/ml 14F HA 190,000 Da 2.5 mg/ml 14G HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14I		HA 107 000 Da 2.5 mg/ml	14E 14E
HA 190,000 Da 2.5 mg/ml 140 HA 222,000 Da 2.5 mg/ml 141 HA 1,600,000 Da 2.5 mg/ml 141			146
HA 222,000 Da 2.5 mg/ml 14H HA 1,600,000 Da 2.5 mg/ml 14I		HA 202,000 Da 2.5 mg/ml	140
IA 1,600,000 Da 2.5 mg/mi 141		HA = 1000 000 Da = 25 ms/ml	14П
		11A 1,000,000 Da 2.5 mg/m	141

glycan array analysis previously. Significant binding observed for each of the cell lines to glycans present on the array are presented in Figure 1 (interactions deemed significant indicated by red shading).

Caco-2 are heterogeneous human epithelial colorectal adeno-

carcinoma cells commonly used as a model of the human small

intestinal mucosa and as such are employed in diverse cell-based assays, including bacterial adhesion, transwell migration and pharmacokinetics/drug absorption studies. Figure 1 shows that Caco-2 cells were able to only weakly interact with 16 glycans on our array, with relative background subtracted fluorescence

TABLE II. Human Cancer Cell Lines Evaluated by Glycan and Lectin Array in This Study

Cell line	ATCC No.	Cancer type	Morphology	Reference
HeLa	CCL-2	Cervical carcinoma	Epithelial	Jones et al. [1971]
HCT116	CCL-247	Colorectal carcinoma	Epithelial	Brattain et al. [1981]
HCT116-FM6	—	Colorectal carcinoma expressing MUC1	Epithelial	McAuley et al. [2007]
Caco-2	HTB-37	Colorectal adenocarcinoma	Polarised, Epithelial	Jumarie and Malo [1991]
MDA-MB435	HTB-129	Ductal breast carcinoma	Spindle shaped	Cailleau et al. [1978]

TABLE III. Summary of Data Generated From Flow Cytometry Analysis of Cell Lines Stained With CFDA. A Normalisation Factor (N_F) was Determined for Each Cell Line as Described Under Materials and Methods Section Prior to Glycan and Lectin Array Analysis

Cell line	Mean % labelled \pm SD	Mean fluorescence \pm SD	N _F
HCT116 HCT116-FM6 HeLa MDA-MB435	$99.34 \pm 0.372 98.88 \pm 0.047 68.77 \pm 1.720 97.40 \pm 0.288 90.62 \pm 0.361 $	$\begin{array}{c} 2466.53 \pm 209.926 \\ 2312.12 \pm 171.799 \\ 2208.65 \pm 281.169 \\ 3815.99 \pm 52.308 \\ 46.98 \pm 81.169 \end{array}$	0.40812 0.43738 0.65841 0.26906 0.23738

intensities below 250 FU (Fig. 2, Supplementary Material). Of these 11 glycans the majority of interactions were clustered around two classes of glycan, with binding observed to four oligomannose structures (5B, 5C, 5D, and 5H), and hyaluronan fragments of varying lengths (13N, 13O, and 14A–14E). Note that Caco-2 cells did not interact with any of the sialylated glycans present on our array.

HCT116 are epithelial colorectal carcinoma cells commonly used in cell based binding assays including bacterial adherence. HCT116 cells interacted with 24 glycans on our array with relative fluorescence intensities above 250 FU (Fig. 3, Supplementary Material). Similar to that observed with Caco-2 cells, HCT116 interactions clustered around oligo-mannose structures, and hyaluronan fragments, but also numerous fucosylated glycans were also bound by HCT116 cells (7A, 7C, 7G, 7P, 8D, and 8E). HCT116 cells also bound two sialylated structures (10A, 10D) (Fig. 1).

The MUC-1-expressing HCT116–FM6 cell line was also assessed on our glycan array. Interestingly not only were the total number of glycans bound by this cell line (36 glycans, Fig. 1) greater than that observed for wild-type HCT116 counterpart, but also the level of binding as determined from relative fluorescence intensities was also increased (Fig. 4, Supplementary Material). In comparison to HCT116, HCT116–FM6 bound a greater number of terminal galactose (1B, 1C, 1D and 2A), fucosylated (7A, 7C, 7F–I, 7K, 7N, 7P, 8D, 8E and 8G) and sialylated (10A, 10L, 10N, and 10P) glycans, as well as binding two *N*-acetylglucosamine (GlcNAc) structures (4B and 4E). HCT116–FM6 also bound the same hyaluronan fragments recognised by HCT116 cells (Fig. 1).

Glycan array screening of cervical cancer HeLa cells revealed novel binding to a total of 49 glycan structures (Fig. 1) with high relative fluorescence intensities (Fig. 5, Supplementary Material). Similar to the other cell lines assessed, positive interactions were clustered around oligo-mannose and fucosylated structures, as well as hyaluronan fragments, with additional interactions observed to various carrageenan oligosaccharides (12A–12F) and an extended number of GAG fragments. Also noteworthy was the lack of binding to GlcNAc structures, in fact HeLa cells were the only cell line that did not bind to at least one poly-GlcNAc glycan. HeLa cells also interacted with five sialylated glycans (10L, 10N–P, 11B), however no linkage specificity was observed.

MDA-MB435 cells have historically been used as a common model of ductal breast carcinoma, however the exact nature of this

cell line has been brought into question since analysis of DNA microarray data suggested that they might be of melanocyte origin [Ross et al., 2000]. Our evaluation showed that MDA-MB435 cells bound the broadest number of glycans, with 52 structures recognised (Fig. 1) at relative fluorescence intensities similar to that seen for HCT116–FM6 and HeLa cells (Fig. 6, Supplementary Material). MDA-MB435 was able to bind member structures in each of the six classes of glycans present on our array, including the largest subset of terminal galactose (1B, 1F–1I, 2C, 2F) and sialylated glycans (10A–C, 10L–N, 10P, 11A) compared to other cell lines evaluated.

In our initial glycan array analysis binding to sialylated structures was observed for all cell lines except for Caco-2 cells, which did not bind to any of the 20 sialylated glycans present on our array. These cell lines were able to bind both α -2,3 and α -2,6 linked Sia, thus exhibiting no linkage specificity. As cancer cell lines are not know for their sialic acid binding potential, but do express a plasma membrane sialidase Neu3 [Kakugawa et al., 2002; Miyagi et al., 2008], glycan array experiments were also performed in the presence of the influenza sialidase inhibitor 4-deoxy-4-guanidino-Neu5Ac2en [Hata et al., 2008]. Figure 2 and Supplementary Material Figures 7–10 clearly show that in the presence of sialidase inhibitor all Sia binding was eliminated, with the exception of weak binding of MDA-MB435 cells to sialyl-lewis A (10A). This strongly indicates that in the absence of sialidase inhibitor, Neu3 removed the terminal Sia from sialylated glycans present on our array exposing the subterminal sugar, Gal, which were subsequently bound by the cells evaluated. This is further supported by the observation that Caco-2 cells did not bind terminal Gal structures on the array, or sialylated structures in the absence of the inhibitor (exposed sub-terminal Gal).

LECTIN ARRAY ANALYSIS

Lectin array screening was conducted to determine the glycosylation profile of the same five human cancer cell lines assessed by the glycan array. Each cell line was CFDA labelled and applied to our lectin array at between 10^5 – 10^6 cells per sub-array. Interactions of labelled cells with immobilised lectins were verified both manually through visual inspection of scanned images and through statistical analysis, with only statistically significant (P < 0.05) binding to lectins over background being considered as positive. Figure 3 summarises our lectin array data, with interactions deemed significant indicated by red shading.

Caco-2 cells exhibited significant binding to numerous immobilised lectins, with the highest relative fluorescence intensities observed to ECA, LFA, and WGA that suggests the presence of LacNAc (Gal β (1,4)GlcNAc), Sia and/or GlcNAc containing glycoconjugates, respectively (Fig. 11, Supplementary Material). Branched mannosylated structures, identified through ConA binding, were also detected, as well as terminal α -Gal/ α -GalNAc-containing structures (MPA binding). Very weak binding to 1 mg/ml immobilised UEA and SJA was observed suggesting the presence of fucosylated and β -GalNAc-containing glycoconjugates. All significant Caco-2 interactions on our array were dependent on the concentration of lectin printed, with the exception of ABA (recognises β -Gal) and anti-GM1, which were only bound at 250 µg/ml (lowest concentration printed). This suggests that

Fig. 1. Summary of significant glycan binding interactions for five cultured human cancer cell lines as assessed by glycan array analysis.

printing of ABA and anti-GM1 at high-density influences their binding capacity, probably through changes in lectin/antibody conformational induced by overcrowding. Binding to anti-GM2 was also observed.

HCT116 cells showed strongest binding to ECA in a manner dependent on the concentration of lectin printed, showing that there is a high presence of terminal LacNAc structures (Fig. 8, Supplementary Material). Significant binding to all concentrations of LFA, as well as WGA was also observed, suggesting the presence of terminal Sia residues. Interaction, although relatively weak, to SNA indicates that Sia may occur α 2,6-linked. Other significant interactions to ConA, SJA and anti-GM2 were also observed but only at the highest concentrations printed (Fig. 12, Supplementary Material). As observed for Caco-2 cells, binding to ABA and anti-GM1was only observed at 250 µg/ml.

In comparison to HCT116 cells, the MUC-1 expressing HCT116-FM6 had dramatically altered cell surface glycosylation pattern, with binding predominantly restricted to ECA, LFA and ConA (Fig. 13, Supplementary Material). Of particular note was the lack of binding to anti-GM1 and anti-GM2, suggesting that the expression of MUC-1 may be masking underlying structures and thus hindering antibody access to gangliosides on the cell surface. Even though HCT116-FM6 interaction with LFA points to the presence of terminal Sia, the lack of binding to WGA, SNA and MAA suggests that LFA may have a broader specificity than that reported in the literature. Similarly, three lectins, ABA, MPA and Jacalin, which are reported to recognise $Gal\beta(1,3)GalNAc$, were include on our array. However, only binding to MPA and Jacalin was noted for HCT116-FM6, indicating that perhaps binding of these lectins may be due to the presence of other listed binding specificities such as α -Gal structures (Fig. 3A).

The human cervical cancer cells HeLa and MDA-MB435 breast cancer cells exhibited the most defined pattern of cell surface glycosylation of the five cell lines analysed (Fig. 3). HeLa cells were bound by ECA, LFA, ConA and WGA (Fig. 14, Supplementary Material). MDA-MB435 bound a similar sub-set of lectins, with the exception of WGA, which was not recognised (Fig. 15, Supplementary Material).

To validate the lectin array data, Caco-2, HeLa and HCT116 cells were selected for by flow cytometric analysis using FITC-labelled SNA, ConA and ECA lectins (Fig. 3B, C and D). Flow cytometric analysis correlated well with our lectin array screening, with significant binding observed with FITC-labelled ConA and ECA to all three cell lines. Little or no binding was detected for Caco-2 and HeLa cells probed with FITC-labelled SNA, whereas SNA binding to HCT116 was observed, which again correlates well with our lectin array data.

DISCUSSION

In this study we employed glycan and lectin array technology to investigate any potential differential glycan binding or surface glycosylation signatures of five cell lines. To the best of our knowledge this is the first systematic study simultaneously investigating both the glycan binding specificity and the cell surface glycosylation of commonly used immortalised cell lines. Due to this unique perspective we were able to identify a clear relationship between the number of glycans bound by individual cell lines, and the diversity of glycans expressed on the cell surface. This relationship was best highlighted for MDA-MB435 cells, which bound the largest subset of glycan structures (Figs. 1 and 2), but had the least diverse surface glycans structures identified by lectin array analysis (Fig. 3). Conversely Caco-2 cells interacted with the least number of glycan structures (Figs. 1 and 2) but bound the largest subset of lectins inferring greater variety of cell surface glycans (Fig. 3). This inverse relationship between glycan and lectin array binding also held true for HeLa and HCT116 cell lines, with these cell lines possessing glycan binding and surface glycosylation signatures somewhere between that observed for Caco-2 and MDA-MB435 cells.

Interestingly, HCT116-FM6 cells bound to a more diverse number of glycans, and was recognised by a smaller number of lectins than wild-type HCT116 cells. The differential binding observed on our glycan array may reflect potential glycan-glycan interactions between the highly glycosylated MUC1 and glycans on the array. The differential results observed on our lectin array may be due to one of two factors. The expression of MUC1, which is predominantly O-glycosylated with terminal Gal and sialic acid structures, may be obscuring other glycans that would normally be exposed on the plasma membrane. Alternatively, MUC1 when bound by immobilised lectin on the array may lead to MUC1 being shed from the cell surface. MUC1 is known to act as a decoy receptor in pathogenic infection [McAuley et al., 2007] where the binding of a pathogen induces the release of MUC1 from the cell surface. We hypothesise that this may be occurring in the HCT116-FM6 MUC1-expressing cell line when bound with lectins that recognise common glycans present on MUC1 under normal glycosylation conditions [Patton et al., 1995].

Another significant observation was the absence of binding by cells of colonic origin to carrageen glycans and glycosaminoglycan (GAG) disaccharide sub-units (12A–13E). Only the MUC1-expressing HCT116–FM6 cells interacted with these structures, however all cell lines tested bound various hyaluronan structures (13N–14I). The latter is an expected result given that hyaluronan is a widely expressed GAG present in the extracellular matrix of almost all body tissues [Chakrabarti and Park, 1980; Toole, 1990].

Our unexpected initial finding that all cell lines with the exception of Caco-2 cells bound sialylated glycans led us to explore the possibility that the well-characterised plasma membrane neuraminidase Neu3 [Kakugawa et al., 2002; Miyagi et al., 2008] may be cleaving Sia from sialoglycoconjuagtes immobilised on our array, thus exposing the sub-terminal sugar. The addition of the influenza virus sialidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) to our glycan array eliminated all putative interaction to sialogly-coconjuagtes, with the exception of MDA-MB435's interaction with sialyl-lewis A (10A). This interaction to the best of our knowledge has not been previously reported. Importantly, our study highlights the significance of inhibiting Neu3 activity when investigating the glycan binding potential of live cells by glycan array analysis.

The analysis of glycosylation signatures on live cells including Caco-2 and HeLa cells using lectin array technology has been reported [Tao et al., 2008]. However, the glycosylation signatures observed for Caco-2 and HeLa cells in our study varies significantly to that previously reported. Of the 15 commercially available lectins used on our array, 14 of these were used on the Tao et al. lectin array. We found that Caco-2 cells showed significant binding to ECA, LFA, ConA, WGA, ABA, MPA and SJA. This was not observed by Tao et al. The only common interaction of Caco-2 cells on both arrays was to UEA-I. Similarly, we observed binding of HeLa cells to ECA, LFA and WGA that was not observed by Tao et al. In addition, Tao et al. reported HeLa binding to DBA, SJA, SNA and Jacalin that was likewise not observed in our study. In fact the only common interaction of HeLa cells on both arrays was to ConA. The unique interaction of ConA to Caco-2 cells and ECA to HeLa cells was confirmed by flow cytometry analysis (Fig. 3), thus verifying that our results were not false positives. The lack of binding of Caco-2 and HeLa cells to LFA and to a lesser extent WGA on the Tao et al. lectin array is particularly interesting given that both cell-lines are known to be heavily sialylated [Dennis et al., 1982]. However, we have noted variation in Sia binding between different batches of commercially available LFA (unpublished data), and this may in part explain the differences observed between the two studies.

What is clearly evident from the comparison of glycosylation signatures generated in our study and that previously reported [Tao et al., 2008] is that the glycosylation status of commonly used cell lines cultured in different laboratories varies significantly. Many factors may influence the glycans displayed on cell surfaces, including sugar concentration in the growth media [Hossler et al., 2009], passage number [Coughlan and Breen, 1995], cell density [Senechal et al., 1983; Coughlan and Breen, 1995] and the serum used [Hossler et al., 2009]. Given that changes in cell surface glycosylation may significantly impact on the validity of data generated from cell-based assays using common laboratory cell lines, we suggest that regular evaluation of glycosylation signatures be undertaken, either using lectin array technology or flow cytometry.

ACKNOWLEDGMENTS

NXA is supported by an Australian Postgraduate Award, CJD is supported by a Griffith University Postdoctoral Research Fellowship. This work was funded in part by Griffith University.

REFERENCES

Apweiler R, Hermjakob H, Sharon N. 1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta (BBA)-Gen Subj 1473:4–8.

Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE. 1981. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41:1751–1756.

Cailleau R, Olivé M, Cruciger Q. 1978. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro Cell Dev Biol-Plant 14:911–915.

Chakrabarti B, Park JW. 1980. Glycosaminoglycans: structure and interaction. CRC Crit Rev Biochem 8:225–313.

Cornil I, Kerbel R, Dennis J. 1990. Tumor cell surface beta 1-4-linked galactose binds to lectin(s) on microvascular endothelial cells and contributes to organ colonization. J Cell Biol 111:773–781.

Coughlan CM, Breen KC. 1995. The control of sialyltransferase activity in tumor-cell lines derived from different tissues in multifactorial. FEBS Lett 369:260–262.

Day CJ, Tiralongo J, Hartnell RD, Logue C-A, Wilson JC, von Itzstein M, Korolik V. 2009. Differential carbohydrate recognition by *Campylobacter jejuni* strain 11168: influences of temperature and growth conditions. PLoS ONE 4:e4927.

Dennis J, Waller C, Timpl R, Schirrmacher V. 1982. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300:274–276.

Dennis JW, Granovsky M, Warren CE. 1999. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta (BBA)-Gen Subj 1473: 21-34.

Hakomori S. 2002. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99:10231–10233.

Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V. 2010. Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75:710–730.

Hata K, Koseki K, Yamaguchi K, Moriya S, Suzuki Y, Yingsakmongkon S, Hirai G, Sodeoka M, von Itzstein M, Miyagi T. 2008. Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob Agents Chemother 52:3484–3491.

Hirabayashi J. 2003. Oligosaccharide microarrays for glycomics. Trends Biotechnol 21:141-143.

Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WEG, Yagi F, Kasai K-i. 2002. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta (BBA)-Gen Subj 1572:232–254.

Hossler P, Khattak SF, Li ZJ. 2009. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949.

Iozzo RV, Cohen I. 1993. Altered proteoglycan gene expression and the tumor stroma. Cell Mol Life Sci 49:447-455.

Jones HWJ, Mc Kusick VA, Harper PS, Wuu K-D. 1971. GEORGE OTTO GEY (1899-1970): the HeLa cell and a reappraisal of its origin. Obstet Gynecol 38:945–949.

Jumarie C, Malo C. 1991. Caco-2cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J Cell Physiol 149:24–33.

Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, Miyagi T. 2002. Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99:10718–10723.

Liang P-H, Wu C-Y, Greenberg WA, Wong C-H. 2008. Glycan arrays: biological and medical applications. Curr Opin Chem Biol 12:86–92.

McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, Florin TH, Hill GR, Korolik V, McGuckin MA. 2007. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 117: 2313–2324.

Miyagi T, Wada T, Yamaguchi K. 2008. Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780:532– 537.

Patton S, Gendler SJ, Spicer AP. 1995. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta (BBA)-Rev Biomembr 1241:407–423.

Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO. 2000. Systematic

variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–235.

Senechal H, Delain D, Schapira G, Wahrmann JP. 1983. Alterations in glycosylation of plasma membrane proteins during myogenesis. Exp Cell Res 147:341–350.

Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD. 2009. Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 16:36–47. Tao S-C, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP. 2008. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18:761–769.

Toole BP. 1990. Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844.

Wells L, Hart GW. 2003. O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 546:154–158.